Sometimes in research it takes a lot of effort, time and patience to get something running. But then when it runs – the satisfaction is granted.
It has been exactly 5 years since the Data Acquisition System for the first J-PET prototype said *beep* and provided first tomography data from the scanner constructed out of plastic scintillators.

During these 5 years, we designed, constructed and eventually successfully launched a completely new vision of PET tomography – a lightweight, modular scanner with a compact and powerful data processing system.

24 modules have 13 plastic scintillator strips and 54 SiPMs on each end. The signals they generate are registered by Artix7 based front end boards that digitize the signals and send the data to 4 data concentrators which are Virtex Ultrascale VCU108 boards from Xilinx. The entire system is controlled by a single Zynq Ultrascale+ ZCU102 board – all interconnected and synchronized by a ton of optical links.

The concentrator boards preprocess the raw data extracting time coincidences, applying calibrations and converting it into reconstructed interaction points on the modules. Such data stream is sent to the storage using UDP and 10GbE links but additionally transferred to the controller board for to be developed real-time image reconstruction. At this moment we have the software visualization using J-PET Software Framework which delivers first insight into the data – a radioactive source placed in the center of the barrel.

It’s something! Now we design a system for a Total-Body Tomography – a scanner capable of monitoring radiopharmaceutical marker distribution over the entire human body in a single shot.
[image K.Kacprzak]