Tag Archives: Zynq MPSoC

Supercomputing Frontiers Europe 2019

Our recent research results of implementation of Conjugate Gradient as benchmark for HPC solutions was presented during Supercomputing Frontiers Europe 2019 conference in Warsaw 11 – 13 March.

For more details about the conference click [here]

Click [here] to access the presentation.

The talk covers:

  • Implementation of Conjugate Gradient computing kernel with Vivado HLS for Xilinx Alveo U250 platform
  • System design and performance results with the external DDR memory
  • System design and performance results with the embedded memory block

PANDA Straws and DAQ system under beam

February was a month of very intensive work to prepare our straw detector and Data Acquisition System for tests with proton beam from COSY accelerator at Juelich Forschungszentrum in Germany.

Together with 5 other groups we had granted one week of beamtime to evaluate the detectors, electronics and software.

It was the first time we evaluated operation of the entire, small scale detector system for PANDA experiment. Three detector subsystems: Forward Tracker, Electromagnetic Calorimeter and Time-of-Flight, each with their own readout system, were synchronized with SODANet system and generated data was processed by a set of 3 Compute Node modules for burst building and preliminary preprocessing.

It was also the possibility to test the data preprocessing system based on Xilinx ZCU102 platform. The board receives data streams from the digitizing boards and recovers track candidates, rejecting empty events.

Seminar – Using FPGA devices for Lattice QCD

You are welcome to join the seminar by dr. Piotr Korcyl on Tuesday 15th January 2019 at 12:15 in room D-2-02 at the Faculty of Physics, Astronomy and Applied Computer Science of Jagiellonian University.

The talk will cover:

  • implementation of Conjugate Gradient algorithm on Xilinx Zynq MPSoC
  • design methodologies to accelerate computations on FPGA platforms using High Level Synthesis
  • memory management and data transport infrastructure
  • prospects to design an FPGA High Performance Computing platform.

Conjugate Gradient as benchmark for FPGAs in HPC

During the International Conference on Lattice Field Theory in East Lansing, MI, USA we presented a poster describing our hardware based accelerator for the Dirac matrix inverter. For the first time FPGA devices were shown to be useful in the HPC context discussed at this conference. Several groups expressed their interest in collaboration including the groups from: Michigan State University, Massachusetts Institute of Technology, Brookhaven National Laboratory and China Normal University.

Presented results together with an overview of further development will soon be published. In the meantime you can check out the poster in the results section.

HW-based Conjugate Gradient on Conference

Our innovative solution for accelerating the Conjugate Gradient algorithm in Lattice Quantum Chromodynamics has been accepted for a poster presentation during the 36th Annual International Symposium on Lattice Field Theory in East Lansing in USA.

We have developed an accelerator capable of performing double precision computations with peak performance at the level of 750 GFLOPS, entirely implemented in Programmable Logic. It is a unique project of this type and sets an entry point for the development of a distributed and scalable High-Performance Computing platform.